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1 . INTRODUCTION

The materials described by Landau symmetry breaking theory have had enormous impact on
technology. Ferromagnetic materials that break spin rotation symmetry can be used as the media
of digital information storage. A hard drive made by ferromagnetic materials can store so much
information that a whole library can be put in it. Liquid crystals that break rotation symmetry
of molecules find wide application in display. Nowadays one can hardly find a household without
liquid crystal display somewhere in it. Crystals that break translation symmetry lead to well
defined electronic band which in turn allow us to make semiconducting devices. Semiconducting
devices make the high tech revolution possible which changes the way we live.

However, recent studies show that there exist new classes of states of matter that cannot be
described by Landau symmetry breaking theory.[1] String-net condensed states[2] are one of the
those new classes of materials, which are even richer than the old symmetry breaking states. After
seeing so much impact of symmetry breaking states, one cannot help to imagine the possible
applications of the richer string-net condensed states.

One possible applications is to use string-net condensed states as media for quantum computing.

String-net condensed state is a state with complicated quantum entanglement. As a many-body

system, the quantum entanglement in string-net condensed state is distributed among many dif-

ferent particles/spins. As a result, the pattern of quantum entanglements cannot be destroyed

by local perturbations. This significantly reduces the effect of decoherence. If we use different

quantum entanglements in string-net condensed state to encode quantum information, the quan-

tum information can last for a long time. [3] So we can use string-net condensed state as quantum

memory.

The quantum information encoded by the string-net entanglements can also be manipulated by
dragging the ends of strings around each others. This process realizes quantum computation[4], or
more generally, quantum information processing. It was shown theoretically that certain string-
net condensed states can realize arbitrary quantum information processing. [4] So those string-net
condensed states are realizations of the universal quantum computer. We see that string-net
condensed states are natural media for both quantum memory and quantum computation. Such
realizations of quantum memory and quantum computation are naturally fault tolerant. [5]

However, right now, we only know how to construct theoretical models that give rise to string-
net condensations. The next step is to design realistic materials or to find realistic materials that
have string-net condensations. This will be the proposed research of this project. In this project
we develop a mean-field approach for string condensed states. This will help us to determine which
experimental systems are most suitable for realizing the theoretical models that contain string-net
condensations.

II . A MEAN-FIELD APPROACH FOR STRING CONDENSED STATES

Recently, several frustrated spin systems have been discovered with the unusual property that
their collective excitations are described by Maxwell's equations. [6-11] These light-like collective
modes can be traced to the highly entangled nature of the ground state. In these systems, the
low energy degrees of freedom are not individual spins, but rather string-like loops of spins. The
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ground state is a coherent superposition of many such string-like configurations - a string condensate
discussed above. It is this "string condensation" in the ground state that is responsible for the
emergent photon - just as particle condensation is responsible for the phonon modes in a superfluid.
[2, 8, 12, 13]

While this qualitative picture is relatively clear, quantitative results on string condensation and
artificial light are lacking. The above models have only been analyzed in limiting (and unrealistic)
cases. Current theoretical result still cannot help us to identify realistic systems with string-net
condensation. The problem is that we are missing a good mean field approach for string-net
condensed states. The conventional mean field theory approaches can only be applied to symmetry
breaking states with local order parameters. They are useless for understanding string condensed

states which are highly entangled and have nothing to do with symmetry breaking.
In this project,[14] we address this problem. We describe a mean field approach that can be

applied to both symmetry breaking and string condensed states. We hope that this technique can

be used to identify conditions under which string condensation may occur, and to help further the
experimental search for emergent photons and new states of matter with string-net condensation.

In practice, our approach can be thought of as a mean field technique for quantum string (or
dimer) models. This technique can be used to estimate the phase diagram of string (or dimer)
models, to find the low energy dynamics of the different phases, and to analyze the phase transitions.
It can be applied to any quantum spin system with the property that its low energy degrees of
freedom are strings or dimers. This includes all the frustrated spin systems cited above.

Our meanfield approach is a variational approach - The variational wave functions IF have a
large number of variational parameters {%} indexed by the oriented links ij of the lattice. For
each set of {%}, the corresponding wave function ^{z} is defined by

ij

where nzj is the occupation number of the oriented link ij in the oriented string configuration X.
nzj = 0 implies that the link ij is not occupied by strings. The above variational wave function

(11.1) can accommodate many different kinds of states - including both string crystals and string
liquids. If % is periodic, T{.,} is a symmetry breaking string crystal state (which correspond to
various spin ordered states); if % is constant for all ij, then IF{_,} is a string liquid state. The
variational states IF{_,} can even access the two types of string liquids described in the previous
section -small string states (the normal state) for small 1%J and string condensed states for

1zzA Pz^l.
We demonstrate the technique with a simple example: a spin-1 XXZ model on the Kagome

lattice [8]:

H = J1E(s7) 2 + J2
E

SISJ - Jay
E(SISJ + S1SJ

)
(11.2)

I ( IJ) ( IJ)

Here I and J label the sites of the Kagome lattice, and E`rJ) sums over all nearest neighbor sites.
This model provides a good testing ground for the method since the low energy dynamics of H is
described by a string model in the regime J2 » Jay » I Ji - J21.

The mean field calculation predicts a number of interesting phases including string condensed
phases with emergent photons. The string condensed phases are ultimately destroyed once in-
stanton fluctuations are included, but several phases and phase transitions remain - including a
quantum critical point with emergent photons that have a w a k2 dispersion.

9J2 24J3

The mean field phase diagram for (11.2) is shown in Fig. la. Here, J = 9^2^ + ^2^ +3(Ji - J2),
2

and g = 32^ . For large positive J/g, the system is in a paramagnetic phase, with no broken

symmetries while for large negative J/g, the system is in a plaquette ordered phase with broken
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(a)

3D XY

Plaquette ordered phase ^ Paramagnetic phase: <S' >-0

14 0.

-0.43 7/g

(b)

z=2U(1)919d

Stripe ordered phase i Paramagnetic phase: <S' >-0

7/g
-1.83

FIG. 1: The mean field phase diagram for (a) the XXZ model (11.2) and (b) the XXZ model with additional
next nearest neighbor interactions. The filled circles denote spins with (Sz) # 0. The sign of (Sz) alternates
around each plaquette in the plaquette ordered phase and along each stripe in the stripe ordered phase.

lattice and spin symmetries. The critical point is in the universality class of the 3D XY model
(see also Ref. [15]).

We also study the model (11.2) with an additional second nearest neighbor interaction
J3 E((zj)) SiS^, J3/g = 0.17. We find a different phase diagram (Fig. lb). For large positive

J/g, the system is in a paramagnetic phase, while for large negative J/g the system is in a stripe
ordered phase with broken rotational and spin symmetry. The mean field calculation predicts that
the phase transition is a deconfined quantum critical point described by a z = 2 U(1) gauge theory.

III . DETECTING STRING-NET CONDENSATION THROUGH TOPOLOGICAL
ENTANGLEMENT ENTROPY

Until recently, the only known physical characterizations of topological order [1] in the string-net
condensed states involved properties of the Hamiltonian - e.g. quasiparticle statistics [16], ground

state degeneracy [17, 18], and edge excitations [1]. In this project,[19] we demonstrate that topo-
logical order is manifest not only in these dynamical properties but also in the basic entanglement
of the ground state wave function. We hope that this characterization of topological order can be
used as a theoretical tool to classify trial wave functions - such as resonating dimer wave functions
[20], Gutzwiller projected states, [21-25] or quantum loop gas wave functions [26]. In addition, it
may be useful as a numerical test for topological order. Finally, it demonstrates definitively that
topological order is a property of a wave function, not a Hamiltonian. The classification of topo-
logically ordered states is nothing but a classification of complex functions of thermodynamically
large numbers of variables.

Let us consider (2 + 1) dimensional systems (though the result can be generalized to any di-
mension). Let IF be an arbitrary wave function for some two dimensional lattice model. For any

subset A of the lattice, one can compute the associated quantum entanglement entropy SA. [27]
The main result of this paper is that one can determine the "total quantum dimension" D of IF by
computing the entanglement entropy SA of particular regions A in the plane.
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FIG. 2: One can detect topological order in a state IF by computing the von Neumann entanglement
entropies Sl, S2i S3, S4 of the above four regions, Al, A2, A3, A4, and then taking the linear combination
(Si - S2) - (S3 - S4) in the limit of R, r -> oo. Here the four regions are drawn in the case of the honeycomb
lattice. Note that these regions have been carefully designed so that Al differs from A2 in the same way
that A3 differs from A4.

Normal states have D = 1 while topologically ordered states have D > 1. Thus, this result
provides a way to distinguish topologically ordered states from normal states, using only the wave
function.

More specifically, consider the four regions Al, A2, A3, A4 drawn in Fig. 2. Let the corresponding
entanglement entropies be Si, S2, 53, 54. We find that the linear combination (Si - S2) - (S3 - S4),
in the limit of large, thick annuli, R, r -* oo, is a universal number that is robust against any local
perturbations. Furthermore

(Si - 52 ) - (S3 - S4) = - log(D2) (111 .1)

where D is the total quantum dimension of the topological order associated with IF. We call the
quantity (Si - S2) - (S3 - S4) the "topological entropy", -Stop, since it measures the entropy
associated with the (non-local) topological entanglement in IF. Stop only depends on the type of
topological order associated with IF.

IV . SUPPORTED STUDENT

The funding of this project has been used to partially support a graduate student, Michael
Levin. He is now a junior fellow at Harvard university.
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